Signal Classification of Submerged Aquatic Vegetation Based on the Hemispherical-Conical Reflectance Factor Spectrum Shape in the Yellow and Red Regions
نویسندگان
چکیده
The water column overlying the submerged aquatic vegetation (SAV) canopy presents difficulties when using remote sensing images for mapping such vegetation. Inherent and apparent water optical properties and its optically active components, which are commonly present in natural waters, in addition to the water column height over the canopy, and plant characteristics are some of the factors that affect the signal from SAV mainly due to its strong energy absorption in the near-infrared. By considering these interferences, a hypothesis was developed that the vegetation signal is better conserved and less absorbed by the water column in certain intervals of the visible region of the spectrum; as a consequence, it is possible to distinguish the SAV signal. To distinguish the signal from SAV, two types of classification approaches were selected. Both of these methods consider the hemispherical–conical reflectance factor (HCRF) spectrum shape, although one type was supervised and the other one was not. The first method adopts cluster analysis and uses the parameters of the band (absorption, asymmetry, height and width) obtained by continuum removal as the input of the classification. The spectral angle mapper (SAM) was adopted as the supervised classification approach. Both approaches tested different wavelength intervals in the visible and near-infrared spectra. It was demonstrated that the Remote Sens. 2013, 5 1857 585 to 685-nm interval, corresponding to the green, yellow and red wavelength bands, offered the best results in both classification approaches. However, SAM classification showed better results relative to cluster analysis and correctly separated all spectral curves with or without SAV. Based on this research, it can be concluded that it is possible to discriminate areas with and without SAV using remote sensing.
منابع مشابه
Wheat Leaf Rust Disease Severity Estimation Using Reflectance Spectrum Coding Methods
Using spectroradiometry and remote sensing techniques is an effective and rapid method in diagnosing vegetation diseases which enforced mostly by using spectral vegetation indices and statistical methods. The present study aimed to deploy encoding technique for the reflectance spectrum of the wheat leaves to assess the severity of the Rust disease. This is unlike to the spectral vegetation ind...
متن کاملTest of Multi-spectral Vegetation Index for Floating and Canopy-forming Submerged Vegetation
Remote sensing of terrestrial vegetation has been successful thanks to the unique spectral characteristics of green vegetation, low reflectance in red and high reflectance in Near-InfraRed (NIR). These spectral characteristics were used to develop vegetation indices, including Normalized Difference Vegetation Index (NDVI). However, the NIR absorption by water and light scattering from suspended...
متن کاملImprovement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra
Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...
متن کاملIn Situ Calibration of Light Sensors for Long-Term Monitoring of Vegetation
1 Abstract—Light sensors are increasingly used to monitor vegetation growing status by measuring reflectance or transmittance in multispectral or photosynthetically active radiation (PAR) bands. The measurements are then used to estimate vegetation indices or the fraction of absorbed PAR (FPAR) in a continuous and long-term manner, and to serve as inputs to environmental monitoring and calibr...
متن کاملEvaluation of the Effect of Source Geometry on the Output of Miniature X-ray Tube for Electronic Brachytherapy through Simulation
Objective: The use of miniature X-ray source in electronic brachytherapy is on the rise so there is an urgent need to acquire more knowledge on X-ray spectrum production and distribution by a dose. The aim of this research was to investigate the influence of target thickness and geometry at the source of miniature X-ray tube on tube output.Method: Five sources were simulated based on problems e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 5 شماره
صفحات -
تاریخ انتشار 2013